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Growth of long-range correlations in a transition between heat conduction and convection
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The transition between heat conduction and convection in the two-dimensional Rayleigh-Bénard sys-
tem is simulated using the direct simulation Monte Carlo method. Long-range correlations of tempera-

ture fluctuations are found to grow in the transition.
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I. INTRODUCTION

The Rayleigh-Bénard (RB) system, in which a fluid is
contained between two horizontal parallel walls and the
bottom wall is kept at a higher temperature than the top
wall, is one of the representative nonequilibrium hydro-
dynamic systems. In the RB system, a heat conduction
state is established when the temperature difference be-
tween the top and bottom walls is smaller than a critical
value, while convection rolls appear when the tempera-
ture difference exceeds the critical value. A transition be-
tween conduction and convection is known as the RB in-
stability.

Convection in the RB system has been studied by many
researchers experimentally [1] and numerically [2]. In re-
cent years, RB convection has been studied at the molec-
ular level using the molecular dynamics (MD) method
and the direct simulation Monte Carlo (DSMC) method
in order to study the microscopic origin of the macro-
scopic flow phenomena. The convection rolls were simu-
lated using the MD method [3], and the field variables
were compared with the results by the hydrodynamic cal-
culations [4]. RB convection was also simulated using
the DSMC method [5], and the results were compared
with the numerical solution of the Navier-Stokes equa-
tion [6]. Although convection rolls were observed, the
transition between conduction and convection was not
discussed in these MD and DSMC simulations. The
transition in the RB system was shown by Watanabe, Ka-
buraki, and Yokokawa using the DSMC method [7]. The
bifurcation of temperature distribution between conduc-
tion and convection was observed at around the hydro-
dynamic critical Rayleigh number. It was pointed out
that the microscopic structures in macroscopic flow tran-
sitions and instabilities could be studied using the DSMC
method.

In order to study fluctuations in nonequilbrium ther-
modynamic systems, spatial correlation functions of field
variables have been studied. Nicolis and Mansour de-
rived the correlation function from a multivariate master
equation, and applied it to a problem of heat conduction
in a fluid submitted to a temperature gradient [8]. The
spatial correlation function in the direction of the tem-
perature gradient was shown to be long ranged in the
nonequilibrium steady state. Long-range spatial correla-
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tions were observed in heat conduction using the MD [9]
and DSMC methods [10]. It was shown in these theoreti-
cal and numerical studies that the nonequilibrium part of
the temperature correlation function was proportional to
the square of the temperature gradient. Garcia et al.
[11] and Mansour et al. [12] obtained the correlation
functions by solving the linearized fluctuating hydro-
dynamic equations. The calculated results were in good
agreement with the DSMC results, and the fluctuating
hydrodynamics was suggested to provide a way to study
hydrodynamic instabilities [12]. Thermodynamic fluctua-
tions in heat conduction were studied well in terms of
correlation functions in the direction of the temperature
gradient, but neither the nonequilibrium system with an
external field such as gravity nor the macroscopic flow in-
stability was studied.

The correlation functions in a thin layer of a nematic
liquid crystal have been observed experimentally by Reh-
berg et al. [13] The experiments were conducted under a
condition below the onset of electroconvection. Horizon-
tal correlation functions in a large aspect-ratio sample
were measured, and the fluctuations were shown to be de-
scribed by a stochastic mean-field model. It was men-
tioned, however, that the electroconvection in nematics
was not expected to be in the same universality class as
RB convection.

In this paper, the DSMC method of Bird [14] is ap-
plied to simulate the RB instability for studying the mi-
croscopic structure in the macroscopic flow instability.
The fluctuations of temperatures in the transition be-
tween heat conduction and convection are discussed in
terms of spatial correlations in vertical direction.

II. SIMULATION
OF THE RAYLEIGH-BENARD SYSTEM

The RB conduction-convection system is simulated us-
ing the DSMC method, which is one of the most widely
used numerical techniques for simulating rarefied gas
flows with incorporating atomistic details. This tech-
nique was developed by Bird [14] and has been applied to
various types of flow problems. In this method, a large
number of molecules in a real gas are simulated by a
smaller number of representative particles. The trajec-
tories of these particles are traced in a short time interval
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by decoupling interparticle collisions and taking interac-
tions with boundaries into account. Interparticle col-
lisions take place on a probabilistic basis in a collision
cell. Macroscopic quantities are obtained by sampling
particle properties in a sampling cell, which is generally
larger than the collision cell.

In the present simulation of the RB system, the compu-
tational region is a two-dimensional rectangle, which is
11.3 mm in width and 5.6 mm in height, with an aspect
ratio of 2.016. Three-dimensional calculations are per-
formed for interparticle collisions, and each particle has
three velocity components in the Cartesian coordinate,
but only two directions are considered for the trajectories
of particles. The computational region is surrounded by
flat walls and filled with hard sphere particles with a di-
ameter of 3.7X107° m and a mass of 4.8X 1072 kg.
The Prandtl number is 0.67. The initial temperature and
pressure are assumed to be 80 K and 20 Pa, respectively.
Under these conditions, the number density is 1.81 X 10%?
m 3, the mean free path is 0.091 mm, and the Knudsen
number is estimated to be 0.016. The computational re-
gion is divided into 40X 20 sampling cells, each of which
is divided into a 5X5 collision cells so that the collision
cell is smaller than the mean free path. Initially, each
sampling and collision cell contains 400 and 16 particles,
respectively. The time step is chosen to be 0.9 of the
mean free time. A sampling is performed in every two
simulation time steps and a flow field is obtained by an
average of 100 samplings.

The temperature of the bottom wall is increased in-
stantly at the time zero from the initial value to a
specified value, which corresponds to the maximum Ray-
leigh number in our simulation condition. The tempera-
ture of the top wall is unchanged from the initial value.
Under these boundary temperature conditions, the simu-
lation is performed for more than 100000 time steps.
The temperature of the bottom wall is, then, decreased to
a next specified value, and the simulation with a smaller
Rayleigh number is performed. In this way, the tempera-
ture of the bottom wall is reduced stepwise, and simula-
tions with a different Rayleigh number are performed.

The diffuse reflection boundary condition, in which a
reflected particle has velocity components randomly sam-
pled from the Maxwellian distribution corresponding to
the surface temperature, is assumed at the top and bot-
tom walls. The specular reflection boundary condition,
in which the perpendicular velocity component of the in-
cident particle is reversed and the tangential velocity
component is unchanged, is assumed at the side walls.
The gravitational acceleration is chosen to be a hypothet-
ical value so that the average increase of kinetic energy of
a particle at the bottom wall is sufficient to bring it to the
top of the system [3,5,6]: g=(kgAT)/(mL,), where g is
the hypothetical gravity, kz the Boltzmann constant, AT
the temperature difference, m the particle mass, and L
the distance between the top and bottom walls. The bot-
tom wall temperature ranges from 120 to 400 K, and the
corresponding Rayleigh numbers (Ra) are from 407 to
4527. The critical Rayleigh number (Ra_) of this system
is 1708, which is obtained from the linear stability
analysis of the macroscopic hydrodynamic equations
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based on the Boussinesq approximation [15]. The wave-
length at the critical Rayleigh number is 2.016, and thus
the aspect ratio of the computational region is set equal
to this value.

III. MACROSCOPIC FLOW FIELD

The absolute value of the flow velocity observed in the
center of the computational region (V) is shown in
Fig. 1 as a function of time for Ra=1870. The velocity is
normalized by the reference velocity (¥ ), which is
defined as the most probable molecular thermal speed for
the average temperature in the system. After the initial
transient, the flow velocity is shown to fluctuate around
an average value.

In this case, the vertical diffusion time defined as
t, =Ly2/K, where « is the thermal diffusivity, is estimated
to be about 2300 time steps from the Chapman-Enskog
theory [16]. The simulation is thus performed for more
than 50 times of the vertical diffusion time. In our simu-
lation conditions, Ra=1870 is the closest to the hydro-
dynamical critical value of Ra,=1708. The parameter
which shows the difference between the simulation condi-
tion and the hydrodynamical critical value,
e=(Ra—Ra_)/Ra,, is 0.095. Although the fluctuations
were always found in Fig. 1, a large transient was not ob-
served except for the initial transient. This is also found
in a temperature history, and is always seen in other cases
of our simulations. The small aspect ratio of the compu-
tational region and the side wall boundary conditions
may be responsible for it.

The maximum velocity in the system (V,. ) is shown
in Fig. 2 against the parameter €. The data points show a
long-time average after the initial transient (between
20000 and 120000 time steps in this case), and the error
bars indicate the range of data distributions.

Some typical examples of velocity vectors and iso-
thermal contours, which are obtained by averaging the
flow fields between 80000 and 85000 time steps, are
shown in Fig. 3. The scaling factor of velocity vectors
for e=—0.448, —0.118, and 0.095 are five times larger
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FIG. 1. The absolute value of the flow velocity at the center
of computational region (V) as a function of time for
Ra=1870. The velocity is normalized by the reference velocity
(V) defined as the most probable molecular thermal speed for
the average temperature in the system.
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FIG. 2. The maximum velocity in the system (¥ ,,) vs the
parameter €é=(Ra—Ra,)/Ra,, where the critical Rayleigh
number (Ra,) is obtained from the linear stability analysis. The
data points (O) show a long-time average after the initial tran-
sient, and the error bars indicate the range of data distributions.

than that for e=0.583.

It is found in Figs. 2 and 3 that the flow velocity is
small, and that no convection rolls appear when € is
smaller than zero, though local flows are seen somewhere
in the system. The temperature fields show the heat con-
duction states with a linear temperature variation in the
vertical direction. Although the flow fields shown in Fig.
3 are obtained at a particular time, similar flow fields
showing the heat conduction state are always observed at
different time steps for € <O0.

The convection rolls appear and the temperature field
is slightly affected for €=0.095. Similar roll-like flows
are always observed at different time steps for e=0.095.
Large and stable convection rolls are established for

€=-0.448

FIG. 3. Examples of velocity vectors (left) and isothermal
contours (right) obtained by averaging the flow fields between
80000 and 85 000 time steps. The scaling factor of velocity vec-
tors for e=—0.448, —0.118, and 0.095 are five times larger
than that for e=0.583.

€=0.583. The convection state is thus found for €>0.
As was reported in Ref. [7], the transition of temperature
distributions between heat conduction and convection
occurs at around the hydrodynamic critical Rayleigh
number (e=0). The DSMC method performed here is
thus confirmed to reproduce the transition.

IV. THERMODYNAMIC FLUCTUATIONS

In this section, correlations of temperature fluctuations
are studied. Since the nonequilibrium constraints are im-
posed at the top and bottom walls in our system, the re-
duced correlation of temperature fluctuations is defined
in the vertical direction (y) by averaging over horizontal
direction (x) as

’ __1_ Lx ’
(8T (y,1)8T(y',1)) I fo (8T (x,y,)8T(x,y’,t))dx ,

(1)

where 8T is a temperature fluctuation which is a devia-
tion from an average temperature, ( ) denotes a short-
time average over 25 successive flow fields (5000 time
steps), and L, is the width of the computational region.
The reduced correlation includes both equilibrium and
nonequilibrium contributions and represents the relation-
ship of temperature fluctuations between the elevation y
and y’.
The correlation coefficient is then defined as

(8T (y,t)8T(y',t))
(8T (y",t)6T(y",t)) ~

The correlation coefficient with one elevation fixed at
y'/L,=0.725 is shown in Fig. 4 for €¢=0.095 as an exam-
ple. The correlation coefficient is seen to be long ranged
with a peak of the autocorrelation (y =y’). It is shown
that the degree of correlation decreases with increasing
distance. The long-range correlation functions with a
peak were already obtained in the heat conduction state
without gravity [8,11,12].

In order to see the degree of correlation at a certain
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FIG. 4. The correlation coefficient f(y,y’,t) with one eleva-
tion fixed at y'/L,=0.725 as a function of elevation for
€=0.095, where L, is the height of the computational region.
The data points (O ) show a long-time average after the initial
transient, and the error bars indicate the range of data distribu-
tions.
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FIG. 5. The characteristic length £(y’,¢) at y'/L,=0.725 as
a function of time for €=0.095.

elevation, the characteristic length is defined as
1 L
t)=-— V't . 3
sy =g f, Sy ody 3)

The characteristic length indicates a measure of the dis-
tance where the effect of the fluctuation spreads. The
definition of the characteristic length given by Eq. (3) is
similar to that of the integral scale, which is known as a
characteristic scale of turbulence structure [17].

The characteristic length at y’/L,=0.725 is shown in
Fig. S as a function of time for e=0.095. After the initial
transient, the characteristic length is shown to fluctuate
around an average value, and no large transient is ob-
served. This is also seen at different elevations and in
other cases of our simulations.

The characteristic length for different values of € is
shown in Fig. 6 as a function of elevation. In the conduc-
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FIG. 6. The dependence of characteristic length &£(y’,f) on
elevation y’ for different values of €. The data points (O ) show
a long-time average after the initial transient, and the error bars
indicate the range of data distributions.

FIG. 7. The average characteristic length £*(¢) in the system
vs €. The data points (O ) show a long-time average after the in-
itial transient, and the error bars indicate the range of data dis-
tributions.

tion state with a large negative value of € (e=—0.448),
the characteristic length is almost uniform in the system
except for the region close to the top and bottom walls.
In the convection state with a large positive value of €
(€=0.583), however, the characteristic length is longer at
high elevation around y =0.7 and shorter at low eleva-
tion around y =0.3. In the cases with a relatively small
value of € (e=—0.118 and 0.095), the characteristic
length is slightly longer at higher elevation. It is thus
found in terms of the characteristic length that the
feature of the convection state is seen in the small-€ cases,
even if € <0.

In order to see the dependence of the characteristic
length on €, the average characteristic length in the sys-
tem is defined as

* _.___1___ Ly ’ ’
gn=7-f, ey ndy @

and shown in Fig. 7. The average characteristic length is
shown to be shorter for the conduction state with large
negative € (¢e=—0.448) than for the convection state
with large positive € (¢=0.583). In the cases with small
€ close to zero (e=—0.118 and 0.095), the average
characteristic length is longer than that in these two
states. The data distributions are also larger for
€=—0.118 and 0.095 than for e=—0.448 and 0.583. It
is thus found at around the critical Rayleigh number
(e=0) that the average distance where the effect of the
fluctuation spreads is elongated and the degree of correla-
tion is relatively high.

V. SUMMARY

In this study, the instability in the RB conduction-
convection system has been simulated using the DSMC
method.

In the conduction state with large negative €, the
characteristic length, which indicates a measure of the
distance where the effect of the fluctuation spreads, is al-
most uniform spatially in the system. In the convection
state with large positive €, however, the characteristic
length is relatively long at high elevation, and this feature
is seen in the state with negative € close to zero. The
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average characteristic length in the system was shown to
be elongated and the long-range correlations of tempera-
ture fluctuations are found to grow in the transition at
around €=0.

Our results indicate that the correlations of fluctua-

tions play an important roll in the flow instability, and
the DSMC method is shown to be valuable tool for study-
ing the macroscopic flow transitions.
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